Abstract
Oxidative stress has been implicated in the etiology of atherosclerosis and even held responsible for plaque calcification. Transition metals such as iron aggravate oxidative stress. To understand the relation between calcium and iron in atherosclerotic lesions, a sensitive technique is required that is quantitatively accurate and avoids isolation of plaques or staining/fixing tissue, because these processes introduce contaminants and redistribute elements within the tissue. In this study, the three ion-beam techniques of scanning transmission ion microscopy, Rutherford backscattering spectrometry, and particle-induced X-ray emission have been combined in conjunction with a high-energy (MeV) proton microprobe to map the spatial distribution of the elements and quantify them simultaneously in atherosclerotic rabbit arteries. The results show that iron and calcium within the atherosclerotic lesions exhibit a highly significant spatial inverse correlation. It may be that iron accelerates the progression of atherosclerotic lesion development, but suppresses calcification. Alternatively, calcification could be a defense mechanism against atherosclerotic progression by excluding iron.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.