Abstract

BackgroundThe composition of parasite communities in two cyprinid species in southern France – native and threatened Parachondrostoma toxostoma and introduced Chondrostoma nasus – was investigated. In sympatry, these two species form two hybrid zones in the Durance and Ardeche Rivers. Due to their different feeding preference and habitat positions in allopatry, we supposed a difference in parasite communities between fish species. We expected more similar parasite communities in sympatric zones associated with habitat overlap (facilitating the transmission of ectoparasites) and similar feeding (more generalist behaviour when compared to allopatry, facilitating the transmission of endoparasites) in both fish species. Finally, we investigated whether P. toxostoma x C. nasus hybrids are less parasitized then parental species.MethodsOne allopatric population of each fish species plus two sympatric zones were sampled. Fish were identified using cytochrome b gene and 41 microsatellites loci and examined for all metazoan parasites.ResultsA high Monogenea abundance was found in both allopatric and sympatric populations of C. nasus. Trematoda was the dominant group in parasite communities of P. toxostoma from the allopatric population. In contrast, the populations of P. toxostoma in sympatric zones were parasitized by Dactylogyrus species found in C. nasus populations, but their abundance in endemic species was low. Consequently, the similarity based on parasite presence/absence between the sympatric populations of P. toxostoma and C. nasus was high. Sympatric populations of P. toxostoma were more similar than allopatric and sympatric populations of this species. No difference in ectoparasite infection was found between P. toxostoma and hybrids, whilst C. nasus was more parasitized by Monogenea.ConclusionsThe differences in endoparasites between P. toxostoma and C. nasus in allopatry are probably linked to different feeding or habitat conditions, but host-parasite evolutionary associations also play an important role in determining the presence of Chondrostoma-specific monogeneans. Our findings suggest that Dactylogyrus expanded with the source host C. nasus into introduced areas and that P. toxostoma became infected after contact with C. nasus. Although the genotype of P. toxostoma and recombinant genotypes of hybrids are susceptible to Dactylogyrus transmitted from C. nasus, the intensity of infection is low in these genotypes.

Highlights

  • The composition of parasite communities in two cyprinid species in southern France – native and threatened Parachondrostoma toxostoma and introduced Chondrostoma nasus – was investigated

  • Molecular profiles of Chondrostoma/Parachondrostoma in localities Using molecular determination (Table 1), an allopatric population of C. nasus was confirmed at Allier and an allopatric population of P. toxostoma was confirmed at Orbieu

  • We showed that the frequencies of C. nasus and P. toxostoma in the localities studied determine the composition of metazoan parasite communities, i.e. the localities with the highest frequencies of C. nasus were the localities with the highest proportion of Monogenea

Read more

Summary

Introduction

The composition of parasite communities in two cyprinid species in southern France – native and threatened Parachondrostoma toxostoma and introduced Chondrostoma nasus – was investigated. In sympatry, these two species form two hybrid zones in the Durance and Ardeche Rivers. These two species form two hybrid zones in the Durance and Ardeche Rivers Due to their different feeding preference and habitat positions in allopatry, we supposed a difference in parasite communities between fish species. Introduced species may act as a competent host for a native parasite in which the infection is multiplied; the parasite “spills back” into the native host. A change in patterns of parasitism may in turn affect host population dynamics

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.