Abstract

Artificial forest ecosystems offer various ecosystem services (ES) and help mitigate climate change effects. Trade-offs or synergies exist among ES in artificial forests. Although forest age influences ES and ecosystem processes, the long-term dynamics of trade-offs among ES in artificial forests and during vegetation restorations remain unclear, complicating vegetation and sustainable management. We studied a Robinia pseudoacacia plantation on the Loess Plateau, China, with a restoration time of 10–44 years. The entropy weight method was used to assess five ES (carbon sequestration, water conservation, soil conservation, understory plant diversity, and runoff and sediment reduction) and investigate how ES change with forest age. The root mean square deviation (RMSD) was used to quantify the trade-offs among ES, and redundancy analysis (RDA) analysis was used to identify the key factors influencing the ES and trade-offs. The results showed that (1) as forest age increased, ES scores initially increased and then decreased. The optimal range for ES values was observed during the middle-aged to mature stages of the forest. (2) Before reaching maturity, the planted forests primarily delivered services related to water conservation and runoff and sediment reduction. (3) In young forests, ES showed a synergistic relationship (RMSD = 0.06), whereas trade-offs occurred in forests at other ages. The largest trade-off was observed in middle-aged forests. (4) The ES pairs with the dominant trade-offs in planted forests differed at different forest age stages. The largest trade-off occurred between carbon sequestration and water conservation (RMSD = 0.28). RDA analysis showed that understory vegetation coverage had a positive correlation with all ES. The ES indicators that significantly (P < 0.001) affected the water‑carbon trade-off were tree carbon storage, soil organic carbon storage, soil total nitrogen, and soil total phosphorus. Thus, the water and carbon relationship must be balanced, and the key factors affecting ES trade-offs in forest management must be regulated to support ES multifunctionality.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call