Abstract

This paper aims to determine whether forecasts from two popular macroeconometric models are useful to improve portfolio returns. The paper begins by estimating two large macro models namely Global Vector Autoregressive (GVAR) and Factor-Augmented Vector Autoregressive (FAVAR). The forecasts from these models are then used in a backtester, simulating a trading rule. In the first empirical test with a simple single position test, perfect forecast performed best but the highest return came from a strategy that uses GVAR forecast although it has a lower Sharpe ratio. The result from the second backtest with multiple positions is more in line with expectation as a strategy using the perfect forecast outperformed GVAR in all scenarios. The evidence from this paper shows how investment returns are driven by forecast accuracy but also heavily on portfolio management criteria.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.