Abstract
ABSTRACTSpatial point-pattern analyses (PPAs) are used to quantify clustering, randomness, and uniformity of the distribution of channel belts in fluvial strata. Point patterns may reflect end-member fluvial architecture, e.g., uniform compensational stacking and avulsion-generated clustering, which may change laterally, especially at greater scales. To investigate spatial and temporal changes in fluvial systems, we performed PPA and architectural analyses on extensive outcrops of the Cretaceous John Henry Member of the Straight Cliffs Formation in southern Utah, USA. Digital outcrop models (DOMs) produced using unmanned aircraft system-based stereophotogrammetry form the basis of detailed interpretations of a 250-m-thick fluvial succession over a total outcrop length of 4.5 km. The outcrops are oriented roughly perpendicular to fluvial transport direction. This transverse cross-sectional exposure of the fluvial system allows a study of the system's variation along depositional strike. We developed a workflow that examines spatial point patterns using the quadrat method, and architectural metrics such as net sand to gross rock volume (NTG), amalgamation index, and channel-belt width and thickness within moving windows. Quadrat cell sizes that are ∼ 50% of the average channel-belt width-to-thickness ratio (16:1 aspect ratio) provide an optimized scale to investigate laterally elongate distributions of fluvial-channel-belt centroids. Large-scale quadrat point patterns were recognized using an array of four quadrat cells, each with 237× greater area than the median channel belt. Large-scale point patterns and NTG correlate negatively, which is a result of using centroid-based PPA on a dataset with disparately sized channel belts. Small-scale quadrat point patterns were recognized using an array of 16 quadrat cells, each with 21× greater area than the median channel belt. Small-scale point patterns and NTG correlate positively, and match previously observed stratigraphic trends in the fluvial John Henry Member, suggesting that these are regional trends. There are deviations from these trends in architectural statistics over small distances (hundreds of meters) which are interpreted to reflect autogenic avulsion processes. Small-scale autogenic processes result in architecture that is difficult to correlate between 1D datasets, for example when characterizing a reservoir using well logs. We show that 1D NTG provides the most accurate prediction for surrounding 2D architecture.
Highlights
The architecture of fluvial deposits records complex interactions between allogenic and autogenic processes
point pattern analyses (PPAs) methodology applied to fluvial deposits is still relatively new, and only a few methods have been tested on a limited number of outcrops such as the Cretaceous
The results reveal dataset-size guidelines for any PPA method, provided that the data set is similar in scale and channel belt density to CC1 and CC5
Summary
The architecture of fluvial deposits records complex interactions between allogenic and autogenic processes. Sandstone body density and interconnectedness (essentially NTG and amalgamation, respectively) were the key subjects of early modeling work by Leeder (1978), Allen (1978), and Bridge and Leeder (1979), known collectively as the LAB models (Paola 2000). These two architectural characteristics of fluvial strata strongly impact reservoir quality by determining the volume of connected porous rock capable of hosting hydrocarbons or water Detailed digital outcrop datasets allow us to connect 1D data to 2D outcrop architectural data and expand to 3D architectural prediction
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.