Abstract

Environment size has been shown to influence the reliance on local and global geometric cues during reorientation. Unless changes in environment size are produced by manipulating length and width proportionally, changes in environment size are confounded by the amount of the environment that is visible from a single vantage point. Yet, the influence of the amount of the environment that is visible from any single vantage point on the use of local and global geometric cues remains unknown. We manipulated the amount of an environment that was visually available to participants by manipulating field of view (FOV) in a virtual environment orientation task. Two groups of participants were trained in a trapezoid-shaped enclosure to find a location that was uniquely specified by both local and global geometric cues. One group (FOV 50°) had visually less of the environment available to them from any one perspective compared to another group (FOV 100°). Following training, we presented both groups with a control test along with three novel-shaped environments. Testing assessed the use of global geometry in isolation, in alignment with local geometry, or in conflict with local geometry. Results (confirmed by a follow-up experiment) indicated that constraining FOV prevented extraction of geometric properties and relationships of space and resulted in an inability to use either global or local geometric cues for reorientation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.