Abstract

To assess the distortion of high-density materials using two CBCT devices presenting convex triangular and cylindrical fields of view (FOVs). Four high-density cylinders were individually placed in a polymethylmethacrylate phantom. 192 CBCT scans were acquired using the convex triangular and cylindrical FOVs of Veraviewepocs® R100 (R100) and Veraview® X800 (X800) devices. Using HorosTM's software, two oral radiologists determined the cylinders' horizontal and vertical dimensional alterations. Nine oral radiologists subjectively identified each cylinder's axial shape distortion. Statistical analysis comprised Multiway ANOVA (α = 5%), and the Kruskal-Wallis test. The distortion in the axial plane was greater in the convex triangular FOVs for both devices in almost all the materials (p < 0.05). The evaluators subjectively identified a shape distortion in both FOVs for R100 device (p < 0.001), while no distortion was identified for X800 device (p = 0.620). A vertical magnification of all materials was observed in both FOVs for both devices (p < 0.05). No differences among vertical regions (p = 0.988) nor FOVs (p = 0.544) were found for the R100 device, while all materials showed higher magnification in all regions in the cylindrical FOV (p < 0.001) of the X800 device. The convex triangular FOV influenced the axial distortion of the high-density materials in both devices. A vertical magnification was observed in both FOVs of both devices, but it was greater in the cylindrical FOV of the X800 device.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call