Abstract

Tree shrews represent a relevant model to study the evolution of primate manual laterality as they are phylogenetically close to primates, they are able to grasp despite having a nonopposable thumb, and they possess a well-developed visual system. In this study, we examined the paw laterality and grasping success rate of 30 Tupaia belangeri (15 males, 15 females) in 2 forced-food grasping tasks (i.e., in a forced-food grasping experiment, the animal has to use paws instead of mouth for food retrieval). We also attempted to determine whether paw usage would be affected by the availability of visual cues using both a visual task (transparent tube) and a nonvisual task (identical but opaque tube). In both tasks, tree shrews showed paw preferences at an individual but not at a population level. Paw laterality (direction and strength) did not differ between tasks. Moreover, in the specific task that we used, grasping success rate was not affected by an absence of visual cues, indicating that tree shrews did not rely on visual guidance to direct their grasps in this forced-food grasping experiment. Our findings suggest that, in contrast to primates, paw usage in tree shrews may result from a modification of a fixed motor pattern in which the preferred direction may be learned. This basic motor organization might be a first step in the evolution of manual laterality, which eventually became controlled by vision in the primate lineage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call