Abstract

Previously, it has been thought that handedness is unique to humans. Recently, it has been found that hand or paw preferences are common among a variety of vertebrate species. Different models have been put forth to describe the evolution of primate handedness. In this study we aimed to explore whether these models can also be used to predict manual laterality in nonprimate mammalian groups. The cat (Felis silvestris catus) is a good nonprimate model for manual laterality, as cats frequently use paws to catch and hold prey. Cats were exposed to two standardized manual laterality tasks, differing in postural demand. Subjects (N = 28) were forced to use either a stable or unstable body posture (i.e., sitting or standing vs. vertical clinging) to extract food items from a plastic box attached at two different heights. We revealed that cats exhibited paw preferences at an individual level with about 40% left, 30% right, 30% nonlateralized subjects. Postural demand was linked to task difficulty: the unstable body posture was found to be significantly more difficult than the stable body posture. However, these differences in postural demand and task difficulty did not lead to differences in direction or strength of paw preference. Findings suggested that nonprimate mammals differ from primates in their sensitivity to task related factors, such as postural demand. Results coincide with those of some prosimians, providing support for the hypothesis that postural demand and the associated task complexity became influencing factors on manual laterality in the course of primate evolution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call