Abstract
Information about developed positron emission tomography (PET) tracers and obtained clinical PET images is publicly available in a database. However, findings regarding the kinetic parameters of PET tracers are yet to be summarized. Therefore, in this study, we created an open-access database of central nervous system (CNS) kinetic parameters in the healthy human brain for existing PET tracers (DOCK-PET). Our database includes information on the kinetic parameters and compounds of existing CNS-PET tracers. The kinetic parameter dataset comprises the analysis methods, VT, BPND, K parameters, relevant literature, and study details. The list of PET tracers and kinetic parameter information was compiled through keyword-based searches of PubMed and the Molecular Imaging and Contrast Agent Database (MICAD). The kinetic parameters obtained, including VT, BPND, and K parameters, were reorganized based on the defined brain anatomical regions. All data were rigorously double-checked before being summarized in Microsoft Excel and JavaScript Object Notation (JSON) formats. Of the 247 PET tracers identified through searches using the PubMed and MICAD websites, the kinetic parameters of 120 PET tracers were available. Among the 120 PET tracers, compound structures with chemical and physical properties were obtained from the PubChem website or the ChemDraw software. Furthermore, the affinity information of the 104 PET tracers was gathered from PubChem or extensive literature surveys of the 120 PET tracers. We developed a comprehensive open-access database, DOCK-PET, that includes both kinetic parameters of healthy humans and compound information for existing CNS-PET tracers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.