Abstract

In this study, we sampled yellow perch from three lakes along a metal-contamination gradient and examined their olfactory ability in response to conspecific chemical alarm cues and metal-binding characteristics of their olfactory epithelium (OE). We measured the electrophysiological response at the OE, tested their antipredator behaviour and measured neuronal density at the olfactory rosette and bulb. Yellow perch from contaminated lakes exhibited significantly larger electrophysiological responses to alarm cues than clean lake fish, but showed no antipredator behaviour contrary to clean lake fish. Neuron density did not differ at either the olfactory rosette or bulb between clean and contaminated fish. Unlike fishes raised under laboratory or aquaculture settings, fish from contaminated lakes possessed a functional OE after metal exposure, but similar to laboratory/aquaculture fishes, yellow perch did not exhibit olfactory-mediated behaviours. Thus, wild fish from contaminated lakes can detect chemical stimuli but olfactory signal processing is disrupted which could alter ecological functioning.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.