Abstract

In this study, the general condition, swimming capacities, and tissue metabolic capacities and metal concentrations in wild yellow perch (Perca flavescens) were examined from a range of metal-contaminated lakes near Sudbury, Ontario. Fish exposed to elevated environmental cadmium and copper concentrations showed higher liver concentrations of these metals and lower condition indices. Because growth rate appeared lower in the most metal-contaminated fish, the high tissue activities of nucleoside diphosphate kinase, an indicator of biosynthesis, in these fish indicated an increased rate of protein turnover and suggested a bioenergetic cost of metal exposure. Yellow perch from the most metal-contaminated lakes exhibited lower aerobic capacities, as indicated by citrate synthase and β-hydroxyacyl coenzyme A dehydrogenase activities, two mitochondrial enzymes involved in aerobic adenosine triphosphate production, and by critical swimming speed. There was no evidence from our data that environmental metal exposure affected anaerobic capacities of tissues as measured by lactate dehydrogenase activities or anaerobic fast-start swimming performance. Overall, these data show that metal exposure leads to measurable effects on metabolic capacities in wild yellow perch.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call