Abstract

Optimal foraging theory predicts that predators prefer those prey species that are most rewarding in terms of reproductive success, which is dependent on prey quality and prey availability. To investigate which selection pressures may have moulded prey preference in an acarine system consisting of two prey species and three predator species, we tested whether prey preference of the predators is matched by the associated reproductive success. The predators involved areAmblyseius finlandicus (Oudemans),Am. potentillae (Garman) andTyphlodromus pyri Scheuten. The prey species are the apple rust mite (Aculus schlechtendali (Nalepa)) and the fruit-tree red spider mite (Panonychus ulmi (Koch)). Reproductive success was assessed in terms of intrinsic rate of increase and for one predator also in terms of diapause induction. All three predator species reached highest reproductive success on the same prey species: apple rust mite. This was most pronounced for the predatorAm. finlandicus, because its larval stage suffered severe mortality when feeding onP. ulmi. An independent study on prey preference of the three predator species (Dicke et al., 1988) revealed thatAm. finlandicus prefersAc. schlechtendali toP. ulmi, whereas the other two predator species have the reverse preference. Thus, on the basis of current data, prey preference ofAm. finlandicus can be understood in terms of reproductive success. However, this is not so for prey preference ofT. pyri andAm. potentillae. Investigations needed for a better understanding of prey preference of the last-named two predator species are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call