Abstract

Real estate premium associated with landscape amenities is a well-studied topic with a primary focus on housing prices. Presumably, the willingness-to-pay for landscape amenities should be very different between homeowners and tenants. Thus far, how landscape amenities affect residential rental prices is not well understood. This paper takes advantage of the big data of online housing advertisements to unravel how landscape amenities are capitalized into rental prices across five Chinese megacities (Beijing, Shanghai, Shenzhen, Hangzhou and Wuhan). Natural language processing, the latent Dirichlet allocation in particular, is first employed to semantically analyze the geo-textual advertisements. It reveals that ‘landscape amenities’ is a typical topic and ‘park’ is a typical component for housing advertisements in the five megacities. The lexicon-based sentimental analysis further shows that the strength of the sentiments associated with the ‘landscape amenities’ varies with cities. A series of hierarchical hedonic models based on the extracted semantic and sentimental aspects are then established for each megacity after segmenting the rental market into submarkets. The capitalization effect of landscape amenities is significant in Beijing, Hangzhou and Wuhan, while it is not significant in Shanghai and Shenzhen. Finally, variance decomposition analysis and marginal implicit price calculation unveil to what extent landscape amenities contribute to residential rental prices. Based on these findings, we discuss several major implications for urban planning. Our study unsettles the popular presumption that landscape amenities are key determinants of real estate values. It renews our understanding of the economic values of landscape amenities theoretically and methodologically.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.