Abstract

Employing algorithms of scientific computing often comes in hand with finding a trade-off between accuracy and performance. Novel parallel hardware and algorithms only slightly improve these issues due to the increasing size of the problems. While high accuracy is inevitable for most problems, there are parts in scientific computing that allow us to introduce approximation. Therefore, in this paper we give answers to the following questions: (1) Can we exploit different approximate computing strategies in scientific computing? (2) Is there a strategy to combine approaches? To answer these questions, we apply different approximation strategies to a widely used iterative solver for linear systems of equations. We show the advantages and the limits of each strategy and a way to configure a combination of strategies according to a given relative error. Combining orthogonal strategies as an overall concept gives us significant opportunities to increase the performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.