Abstract

AbstractIncreasing antibiotic resistance in bacteria is a critical issue that often leads to infections or other morbidities. Mechanical properties of the bacterial cell wall, such as thickness or elastic modulus, may contribute to the ability of a bacterial cell to resist antibiotics. Techniques like atomic force microscopy (AFM) are used to quantify bacterial cell mechanical properties and image cell structures at nanoscale resolutions. An additional benefit of AFM is the ability to probe samples submerged in liquids, meaning that live bacteria can be imaged or evaluated in environments that more accurately simulate in vivo conditions as compared to other methods like electron microscopy.However, because AFM measurements are highly sensitive to small perturbations in the deflection of the tip of a sensor probe brought into contact with the specimen, immobilization of bacteria prior to measurement is essential for accurate measurements. Traditional chemical fixatives crosslink the molecules within the bacterial cell wall, which prevent the bacteria from locomotion. While effective for imaging, chemical crosslinkers are known to affect the measured stiffness of eukaryotic cells and also may affect the measured stiffness of the bacterial cell wall. Alternative immobilization methods include Cell-Tak™, an adhesive derived from marine mussels that does not interact with the bacterial wall and filters with known pore sizes which entrap bacteria. Previous studies have examined the effect of these immobilization methods on successful imaging of bacteria but have not addressed differences in measured modulus. This study compares the effects of immobilization methods including chemical fixatives, mechanical entrapment in filters, and Cell-Tak™ on the stiffness of the bacterial cell wall as measured by force spectroscopy.KeywordsAtomic force microscopyMechanobiologyLive cell immobilization

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.