Abstract

BackgroundProbiotics have great potential to contribute to development of healthy dietary regimes, preventive care, and an integrated approach to immunity-related disease management. The bacterial wall is a dynamic entity, depending on many components and playing an essential role in modulating immune response. The impact of cell wall elasticity on the beneficial effects of probiotic strains has not been sufficiently studied.The aim was to investigate the effect of lactic acid bacteria (LAB) and bifidobacteria strains on phagocytic system cells (macrophages) as related to bacterial wall elasticity, estimated using atomic force microscopy (AFM).MethodsWe conducted studies on Balb/c line mice 18–20 g in weight using lyophilized strains of LAB—Lactobacillus acidophilus IMV B-7279, Lactobacillus casei IMV B-7280, Lactobacillus delbrueckii subsp. bulgaricus IMV B-7281, and bifidobacteria—Bifidobacterium animalis VKL and Bifidobacterium animalis VKB. We cultivated the macrophages obtained from the peritoneal cavity of mice individually with the strains of LAB and bifidobacteria and evaluated their effect on macrophages, oxygen-dependent bactericidal activity, nitric oxide production, and immunoregulatory cytokines. We used AFM scanning to estimate bacterial cell wall elasticity.ResultsAll strains had a stimulating effect on the functional activity of macrophages and ability to produce NO/NO2 in vitro. Lactobacilli strains increased the production of IL-12 and IFN-γ in vitro. The AFM demonstrated different cell wall elasticity levels in various strains of LAB and bifidobacteria. The rigidity of the cell walls among lactobacilli was distributed as follows: Lactobacillus acidophilus IMV B-7279 > Lactobacillus casei IMV B-7280 > Lactobacillus delbrueckii subsp. bulgaricus IMV B-7281; among the strains of bifidobacteria: B. animalis VKB > B. animalis VKL. Probiotic strain survival in the macrophages depended on the bacterial cell wall elasticity and on the time of their joint cultivation.ConclusionLAB and bifidobacteria strains stimulate immune-modulatory cytokines and active oxygen and nitrogen oxide compound production in macrophages. Strains with a more elastic cell wall according to AFM data demonstrated higher resistance to intracellular digestion in macrophages and higher level of their activation.AFM might be considered as a fast and accurate method to assess parameters of probiotic strain cell wall to predict their immune-modulatory properties.

Highlights

  • Probiotics have great potential to contribute to development of healthy dietary regimes, preventive care, and an integrated approach to immunity-related disease management

  • It was established that the excess moisture removal did not cause the destruction of L. acidophilus IMV B-7279, L. casei IMV B-7280, B. animalis VKL, and B. animalis VKB, so it was possible to estimate their cell wall elasticity, without resorting to a more painstaking measurements in liquid buffer

  • Our results demonstrated that L. delbruеckii subsp. bulgaricus IMV B-7281 strain with more elastic cell wall was more effectively digested in the macrophages and had better activating action on the functional activity of macrophages in vitro, nitric oxide production, and their ability to accumulate reactive oxygen metabolites than L. casei IMV B-7280 and L. acidophilus IMV B-7279 strains with more rigid cell walls

Read more

Summary

Introduction

Probiotics have great potential to contribute to development of healthy dietary regimes, preventive care, and an integrated approach to immunity-related disease management. The bacterial wall is a dynamic entity, depending on many components and playing an essential role in modulating immune response. The impact of cell wall elasticity on the beneficial effects of probiotic strains has not been sufficiently studied. The aim was to investigate the effect of lactic acid bacteria (LAB) and bifidobacteria strains on phagocytic system cells (macrophages) as related to bacterial wall elasticity, estimated using atomic force microscopy (AFM)

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.