Abstract

Protein turnover is a key post-translational event that regulates numerous cellular processes. It enables cells to respond rapidly to intracellular signals and changing environmental conditions by adjusting the levels of pivotal proteins. A major proteolytic pathway involves the ubiquitination of target proteins and subsequent targeting to the 26S proteasome for degradation. Many F-box proteins play a determining role in the substrate specificity of this degradation pathway. In most cases, selective recognition of the target proteins relies on protein-protein interactions mediated by the C-terminal domain of the F-box proteins. In mammals, the occurrence of F-box proteins with a C-terminal SBD (sugar-binding domain) that specifically interacts with high-mannose N-glycans on target glycoproteins has been documented. The identification and characterization of these sugar-binding F-box proteins demonstrated that F-box proteins do not exclusively use protein-protein interactions but also protein-carbohydrate interactions in the Ub (ubiquitin)/proteasome pathway. Recently, putative sugar-binding F-box proteins have been identified in plants. Genome analyses in Arabidopsis and rice revealed the presence of F-box proteins with a C-terminal lectin-related domain homologous with Nictaba, a jasmonate-inducible lectin from tobacco that was shown to interact with the core structure of high-mannose and complex N-glycans. Owing to the high similarity in structure and specificity between Nictaba and the SBD of the mammalian Fbs proteins, a similar role for the plant F-box proteins with a Nictaba domain in nucleocytoplasmic protein degradation in plant cells is suggested.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.