Abstract

Molecular recognition based on non-covalent interactions between two or more molecules plays a crucial role in biological systems. Specific biological molecule recognition has been widely applied in biotechnology, clinical diagnosis, and treatment. The efficiency and affinity of molecular recognition are greatly determined by the spatial conformation of biomolecules. The designability of DNA nanotechnology makes possible the precise programming of the spatial conformation of biomolecules including valency and spacing, further achieving spatial pattern recognition regulation between biomolecules. This review summarizes recent achievements with DNA-based molecular spatial pattern recognition systems, the important factors affecting spatial pattern recognition, and their applications in biosensing, bioimaging, and targeted therapy. The future challenges in and development of this field are discussed and prospected. This review will provide valuable guidance for the creation of new DNA tools to enhance the efficiency and specificity of biomolecular recognition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call