Abstract
Biosensor devices are important in clinical practice and environmental studies because they allow specific detection of target molecules from a variety of samples. However, challenges still remain when attempting to develop sensitive, selective, rapid, and cost-effective assays for biomolecule detection. Devices that use DNA-modifying enzymes to catalyze detection reactions have recently been developed. These devices show promise because they are often more sensitive and specific, have shorter assay times, are more cost-effective, and are easier to use than the currently used biosensors. Here, we review the current trends in DNA-modifying enzyme reaction-coupled biosensors, including devices using DNA polymerases, nicking endonuclease, exonucleases, and ligases. The molecular strategies underlying diverse DNA-modifying enzymes coupled to biomolecule detection platforms are reviewed. We also discuss the strengths and limitations of each strategy and suggest methods to overcome current limitations. Finally, the future prospects of DNA-modifying enzyme reaction-coupled biosensor development have been proposed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.