Abstract

Gold nanoparticles (AuNPs) or gold nanorods (AuNRs) are loaded in polyacrylamide hydrogels cooperatively cross-linked by bis-acrylamide and nucleic acid duplexes or boronate ester-glucosamine and nucleic acid duplexes. The thermoplasmonic properties of AuNPs and AuNRs are used to control the stiffness of the hydrogels. The irradiation of the AuNP-loaded (λ = 532 nm) or the AuNR-loaded (λ = 808 nm) hydrogels leads to thermoplasmonic heating of the hydrogels, the dehybridization of the DNA duplexes, and the formation of hydrogels with lower stiffness. By ON/OFF irradiation, the hydrogels are switched between low- and high-stiffness states. The reversible control over the stiffness properties of the hydrogels is used to develop shape-memory hydrogels and self-healing soft materials and to tailor thermoplasmonic switchable drug release. In addition, by designing bilayer composites of AuNP- and AuNR-loaded hydrogels, a reversible thermoplasmonic, light-induced bending is demonstrated, where the bending direction is controlled by the stress generated in the respective bilayer composite.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call