Abstract

Nickel-cobalt sulfide (NiCo2S4) nanosheets were successfully fabricated by an environment-friendly hydrothermal method with the assistance of DNA molecules. Different morphological samples were prepared by adjusting the concentrations of DNA. The NiCo2S4 nanosheets derived from 0.2 μg/mL DNA (denoted as DS2) exhibited a desirable mesoporous feature with superior electrochemical performance compared with other samples. As a battery-type electrode material, it exhibited a high specific capacity of 644C g−1 at the current density of 1 A/g, superior rate capability of 74.3% retention at 15 A/g and remarkable cycling stability of 90.5% after 1500 cycles. Thus, the electrode material of NiCo2S4 nanosheets assisted by DNA molecule offered great potential in eco-friendly energy storage device applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.