Abstract

Lyme disease is the most prevalent tick-borne infection in the Northern Hemisphere. Borrelia burgdorferi , the causative spirochete bacteria, has been maintained in nature for millennia in a consistent enzootic cycle between Ixodes ticks and various small vertebrate hosts. During the tick's blood meal, B. burgdorferi substantially increases its replication rate, alters its repertoire of outer surface proteins, and disseminates into the new vertebrate host. Across eubacteria, DnaA is the master regulatory protein that initiates chromosomal replication and acts as a transcription factor to regulate specific pathways. Here, we describe the roles that B. burgdorferi DnaA has on the physiology and gene expression of this medically important pathogen.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.