Abstract

The nuclear entry of exogenous DNA in mammalian cells is critical for efficient gene transfer. A novel technique was developed for the covalent attachment of cationic peptides to double-stranded DNA using a cyclo-propapyrroloindole cross-linker. The attachment of the SV40 large T antigen nuclear localization signal peptide induced the nuclear accumulation of the conjugated DNA in digitonin-permeabilized cells via the classical pathway for the nuclear transport of karyophilic proteins. Increased nuclear uptake of the modified DNA, however, did not occur after it was microinjected into the cytoplasm of cultured cells. This demonstration that the covalent modification of DNA with a signal peptide alters its behavior and interaction with other cellular factors portends the potential of DNA vector chemistry to enhance the efficiency of cellular gene transfer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.