Abstract

We investigated the immunogenicity and protective efficacy of DNA vaccine combinations expressing mycobacterial heat shock protein 65 (Hsp65) and interleukin-12 (IL-12) using gene gun bombardment and the hemagglutinating virus of Japan (HVJ)-liposome method. A mouse IL-12 expression vector (mIL-12 DNA) encoding single-chain IL-12 proteins comprised of p40 and p35 subunits were constructed. In a mouse model, a single gene gun vaccination with the combination of Hsp65 DNA and mIL-12 DNA provided a remarkably high degree of protection against challenge with virulent Mycobacterium tuberculosis; bacterial numbers were 100-fold lower in the lungs compared to BCG-vaccinated mice. To explore the clinical use of the DNA vaccines, we evaluated HVJ-liposome encapsulated Hsp65 DNA and mIL-12DNA (Hsp65 + mIL-12/HVJ). The HVJ-liposome method improved the protective efficacy of the Hsp65 DNA vaccine compared to gene gun vaccination. Hsp65 + mIL-12/HVJ induced CD8 + cytotoxic T lymphocyte activity against Hsp65 antigen. Most importantly, Hsp65 + mIL-12/HVJ vaccination resulted in a greater degree of protection than that evoked by BCG. This protective efficacy was associated with the emergence of IFN-γ-secreting T cells and activation of proliferative T cells and cytokines (IFN-γ and IL-2) production upon stimulation with Hsp65 and antigens from M. tuberculosis. These results suggest that Hsp65 + IL-12/HVJ could be a promising candidate for a new tuberculosis DNA vaccine, which is superior to BCG vaccine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.