Abstract

Asymmetric inheritance of sister chromatids has long been predicted to be linked to discordant fates of daughter cells and even hypothesized to minimize accumulation of mutations in stem cells. Here, we use (2'S)-2'-deoxy-2'-fluoro-5-ethynyluridine (F-ara-EdU), bromodeoxyuridine (BrdU), and light sheet microscopy to track embryonic DNA in whole zebrafish. Larval development results in rapid depletion of older DNA template strands from stem cell niches in the retina, brain, and intestine. Prolonged label retention occurs in quiescent progenitors that resume replication in later development. High-resolution microscopy reveals no evidence of asymmetric template strand segregation in >100 daughter cell pairs, making it improbable that asymmetric DNA segregation prevents mutational burden according to the immortal strand hypothesis in developing zebrafish.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.