Abstract

Faithful segregation of replicated genomes to dividing daughter cells is a major hallmark of cellular life and needs to be part of the future design of the robustly proliferating minimal cell. So far, the complexity of eukaryotic chromosome segregation machineries has limited their applicability to synthetic systems. Prokaryotic plasmid segregation machineries offer promising alternative tools for bottom-up synthetic biology, with the first three-component DNA segregation system being reconstituted a decade ago. In this review, the mechanisms underlying DNA segregation in prokaryotes, with a particular focus on segregation of plasmids and chromosomal replication origins are reviewed, along with a brief discussion of archaeal and eukaryotic systems. In addition, this review shows how in vitro reconstitution has allowed deeper insights into these processes and discusses possible applications of these machineries for a minimal synthetic segrosome as well as the challenge of its coupling to a minimal replisome.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.