Abstract
We here identify a protein (AlfA; actin like filament) that defines a new family of actins that are only distantly related to MreB and ParM. AlfA is required for segregation of Bacillus subtilis plasmid pBET131 (a mini pLS32-derivative) during growth and sporulation. A 3-kb DNA fragment encoding alfA and a downstream gene (alfB) is necessary and sufficient for plasmid stability. AlfA-GFP assembles dynamic cytoskeletal filaments that rapidly turn over (t(1/2)< approximately 45 s) in fluorescence recovery after photobleaching experiments. A point mutation (alfA D168A) that completely inhibits AlfA subunit exchange in vivo is strongly defective for plasmid segregation, demonstrating that dynamic polymerization of AlfA is necessary for function. During sporulation, plasmid segregation occurs before septation and independently of the DNA translocase SpoIIIE and the chromosomal Par proteins Soj and Spo0J. The absence of the RacA chromosome anchoring protein reduces the efficiency of plasmid segregation (by about two-fold), suggesting that it might contribute to anchoring the plasmid at the pole during sporulation. Our results suggest that the dynamic polymerization of AlfA mediates plasmid separation during both growth and sporulation.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.