Abstract

A fluorometric and colorimetric method are described for the determination of hydrogen peroxide and glucose by integrating copper nanoclusters (CuNCs) into a Fenton-like reaction. The mechanism mainly depends on the fast formation of long-strand DNA-templated CuNCs with strong red fluorescence (with excitation/emission maxima at 340/640nm) in the absence of H2O2. The DNA can be cleaved into short-oligonucleotide fragments by hydroxy radicals as formed in the Ce(III)-triggered Fenton-like reaction in the presence of H2O2. As a result, short-strand DNA loses the ability as a template for the formation of CuNCs. This leads to a decrease of fluorescence. The colorimetric assay, in turn, is based on the oxidation of colorless Ce(III) ions to the distinctly yellow Ce(IV) ions (with an absorption maximum at 400nm) by H2O2. Compared with those assays based on the use of enzyme mimics, this method does not require any chromogenic substrates such as ABTS and TMB. Based on the dual-signal readout platform, we successfully achieved the detection of H2O2 and glucose. LODs are as low as 0.266μM and 2.92μM. The methods were applied to the sensitive determination of glucose by using glucose oxidase (GOx) which catalyzes the oxidization of glucose to produce H2O2. The practical application was demonstrated by determination of glucose in human serum, with apparent recoveries of 98.4-101.9% and 99.1-105.6%, respectively. The concentration of glucose ranges from 1 to 500μM and 50 to 600μM based on the dual-signal readout platform, respectively. This fluorometric and colorimetric dual-mode strategy will pave a new avenue for constructing effective assays for H2O2-related analytes in biochemical and clinical applications. Graphical abstractSchematic representation of a fluorometric and colorimetric dual-readout strategy for the sensitive determination of hydrogen peroxide and glucose. The assay has been designed by integrating copper nanoclusters into aCe(III)-triggered Fenton-like reaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.