Abstract
Smart drug delivery systems (DDSs) that respond to, interact with, or are actuated by biological signals or pathological abnormalities (e.g., the tumor microenvironment) for controllable drug release are appealing therapeutic platforms for cancer treatment. Owing to their inherent self-assembled nature, nucleic acids have emerged as programmable materials for the development of multifunctional structures. In response to external environmental stimuli, DNA response elements can serve as switches to trigger conformational changes in DNA structures. Their stimulus-responsive properties make them promising candidates for constructing smart DDSs, and advancements in DNA response element-based DDSs in the field of biomedicine have been made. This review summarizes different types of DNA response elements, including DNA aptamers, DNAzymes, disulfide bond-modified DNA, pH-responsive DNA motifs, and photocleavable DNA building blocks, and highlights the advancements in DNA response element-based smart DDSs for precise drug release. Finally, future challenges and perspectives in this field are discussed.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have