Abstract
An adequate model for the initiation of chromosome replication in Escherichia coli should explain why the introduction of multiple copies of the chromosomal origin of replication, oriC, does not perturb cells seriously and why such multiple origins are replicated synchronously; it should explain why the key initiator protein, DnaA, is activated in vitro by binding specifically to acidic phospholipids and why the Dam methyltransferase is essential for the correct timing of initiation; it should explain why phospholipid synthesis and fluidity are necessary for initiation. In the detachment model, presented here, cyclical changes in the phospholipid composition of the cytoplasmic membrane activate initiator proteins such as DnaA protein and cause origins to detach; this detachment allows torsional stresses to open 13mer sequences in oriC; DnaA assists in the serial opening of these sequences and guides the entry of the helicase to form a pre-priming complex and trigger initiation; the greater affinity of hemi-methylated origin for membrane is re-interpreted as a mechanism for preventing re-initiation.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have