Abstract

We report a novel DNA-programmed plasmonic enzyme-linked immunosorbent assay (ELISA) for the ultrasensitive detection of protein biomarkers with the naked eye. The DNA-programmed plasmonic assay was based on two enzyme-free and isothermal nucleic acid amplification methods: hybridization chain reaction (HCR) and catalyzed hairpin assembly (CHA). In this study, a biotin-labeled DNA probe was utilized insteand of an enzyme-label probe in well-developed ELISA method. The biotin-labeled DNA probe was able to trigger the HCR and CHA processes, and the products could hybridize with DNA-modified gold nanoparticles (AuNPs) to induce the aggregation of the AuNPs and a color change in the solution. The developed method was able to detect as low as 1 pg mL-1 PSA target with the naked eye. Clinical serum samples demonstrated satisfactory results, indicating that the method is useful for early diagnostics and monitoring curative effects after a medical treatment. The developed method presents a simple and portable platform for ultrasensitive protein detection and has potential for point-of-care (POC) diagnostics in less developed areas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.