Abstract

Nerve injury-induced aberrant changes in gene expression in spinal dorsal horn neurons are critical for the genesis of neuropathic pain. N6-methyladenine (m 6 A) modification of DNA represents an additional layer of gene regulation. Here, we report that peripheral nerve injury significantly decreased the level of m 6 A-specific DNA methyltransferase 1 ( N6amt1 ) in dorsal horn neurons. This decrease was attributed, at least partly, to a reduction in transcription factor Nr2f6 . Rescuing the decrease in N6amt1 reversed the loss of m 6 A at the promoter for inwardly rectifying potassium channel subfamily J member 16 ( Kcnj16 ), mitigating the nerve injury-induced upregulation of Kcnj16 expression in the dorsal horn and alleviating neuropathic pain hypersensitivities. Conversely, mimicking the downregulation of N6amt1 in naive mice erased DNA m 6 A at the Kcnj16 promoter, elevated Kcnj16 expression, and led to neuropathic pain-like behaviors. Therefore, decreased N6amt1 caused by NR2F6 is required for neuropathic pain, likely through its regulation of m 6 A-controlled KCNJ16 in dorsal horn neurons, suggesting that DNA m 6 A modification may be a potential new target for analgesic and treatment strategies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call