Abstract

The methylation-mediated silencing of tumor suppressors, including key apoptosis-related genes plays an important role in the pathogenesis and therapeutic resistance in human cancer. In this study, we aimed to elucidate the role and mechanisms of resistance to apoptosis with caspase-8 gene downregulation in human malignant glioma. Reverse transcription-polymerase chain reaction (RT-PCR) and methylation-specific PCR(MSP) were used to examine caspase-8 expressoin at the mRNA level and gene methylation status in normal brain tissue, glioma tissue and cancer cell lines. Caspase-8 protein kinase activity was measured by caspase-8 colorimetric assays; cell apoptosis was examined by AnnexinV/propidium iodide(PI) staining; the rates of tumor cell apoptosis were detected by flow cytometry. Our results revealed that caspase-8 gene silencing may result from the methylation of its gene promoter in human glioma tissues. The expression of caspase-8 at the mRNA level was significantly associated with the grade of human glioma. In certain human cancer cell lines, the expression at the mRNA level, protein kinase activity and tumor cell anti-apoptotic activity and resistance were related to the methylation status of the caspase-8 gene promoter. Thus, the caspase-8 gene methylation status may be used as an indicator for the early diagnosis of human malignant glioma. Combination therapy with demethylation reagents may overcome therapeutic resistance in the same malignancy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.