Abstract

Endocannabinoids are neuromodulatory lipids that mediate the central and peripheral neural functions. Endocannabinoids have demonstrated their anti-proliferative, anti-angiogenic and pro-apoptotic properties in a series of studies. In the present study, we investigated the levels of two major endocannabinoids, anandamide and 2-arachidonylglycerol (2-AG), and their receptors, CB1 and CB2, in human low grade glioma (WHO grade I-II) tissues, high grade glioma (WHO grade III-IV) tissues, and non-tumor brain tissue controls. We also measured the expressions and activities of the enzymes responsible for anandamide and 2-AG biosynthesis and degradation, that is, N-acylphosphatidylethanolamine-hydrolysing phospholipase D (NAPE-PLD), fatty acid amide hydrolase (FAAH), monoacylglycerol lipase (MGL), and diacylglycerol lipase-alpha (DGL), in the same samples. Liquid chromatography-mass spectometry analysis showed that the levels of anandamide decreased, whereas the levels of 2-AG increased in glioma tissues, comparing to the non-tumor controls. The expression levels and activities of NAPE-PLD, FAAH and MGL also decreased in glioma tissues. Furthermore, quantitative-PCR analysis and western-blot analysis revealed that the expression levels of cananbinoid receptors, CB1 and CB2, were elevated in human glioma tissues. The changes of anandamide and 2-AG contents in different stages of gliomas may qualify them as the potential endogenous biomarkers for glial tumor malignancy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.