Abstract
We recently produced 11 cloned kittens by somatic cell nuclear transfer (SCNT) using fibroblasts from a feline fetus (donor A, three kittens), an adult domestic cat (donor B, one kitten), and a deaf adult Turkish Angora cat (donor C, seven kittens). Two kittens were stillborn and three died a month after birth. The donor C-derived kittens did not share their donor's eye color or deafness. To test whether this and the low cloning success rate are due to epigenetic modifications, we compared the methylation of somatic and placental cells from the cloned cats and domestic normal cats by bisulfite mutagenesis sequencing analysis. The DNA methylation of somatic cells from the cloned kittens ranged from 78.0% to 88.9%, and did not differ significantly depending on whether they were stillborn, died early after birth, or were healthy. Donors B and C showed similar levels of methylation (77.0% and 79.1%, respectively), as did somatic cells from normal domestic and Turkish Angora cats (range, 75.7-88.0%). However, donor A showed less methylation (70.6%) than the somatic cells from the kittens derived from it (range, 82.2-88.9%). Moreover, placental cells from three donor C-derived kittens showed significantly higher DNA methylation (range, 76.7-80.5%) than placental cells from normal domestic cats (range, 64.2-74.9%). Thus, methylation of satellite regions in somatic cells may not be responsible for the stillbirth, early death, or different eye and hearing attributes of cloned cats. However, hypermethylation in the placenta of cloned cats may be responsible for low success rates in cloning cats.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have