Abstract
It is important to develop G-quadruplex binding agents that can discriminate between different quadruplexes. Recently we reported the first example that a chiral supramolecular complex can selectively stabilize human telomeric G-quadruplex among different G-quadruplex and duplex DNA, and the two enantiomers show different inhibition effect on telomerase activity. Here, we report that DNA loop sequence can be determinant for this chiral complex G-quadruplex selectivity. Adenine in the diagonal loop plays an important role in G-quadruplex hybrid structural transition, thus, it strongly influences the chiral complex induced DNA structural transition. The complex's preference for human telomeric DNA and its chiral selectivity prompted us to investigate whether the two enantiomers, M and P, can show different effects on cancer cells. The P enantiomer's chiral selectivity has been demonstrated in cancer cells by telomere shortening, beta-galactosidase activity, and up-regulation of cyclin-dependent kinase inhibitors p16 and p21.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.