Abstract

AbstractDNA programming, which is based on the principle of base complementary pairing and Boolean operations, exhibits organizational structures and algorithms similar to those observed in machine language. Consequently, the practical implementation of DNA logic programming can be achieved through the utilization of programming techniques, enabling the discrimination and output generation. In recent years, DNA programming has witnessed a convergence with disciplines, such as life sciences, medicine, and other interdisciplinary areas, thereby giving rise to an advanced research system that yields valuable insights. This development has paved the way for multidisciplinary cutting‐edge research. Furthermore, the successful transition from conceptualization to the practical implementation of DNA programming has been accomplished. This review summarizes the recent advances in DNA logic programming within the biomedical fields, specifically emphasizing the conceptualization and execution of DNA logic programming constructs. The benefits and obstacles associated with the adoption of DNA programming in cutting‐edge research areas are also highlighted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.