Abstract
To the Editor: Recent advances in high-throughput experimental methods and related computational technologies have provided life scientists with large and complex data sets. These data sets present exciting new opportunities for advancing research into the fundamental processes of living systems. However, this flood of data also presents many challenges, not the least of which is training students to examine and evaluate such data. Despite the increasing importance of bioinformatics and the fact that its interdisciplinary and process-oriented nature aligns directly with the goals of Vision and Change in Undergraduate Education: A Call to Action (American Association for the Advancement of Science [AAAS], 2011 ), our collective experience is that there is currently a general lack of integration of bioinformatics concepts into undergraduate education in the life sciences. As leaders of an ongoing effort to establish an extended network of educators with a goal to integrate bioinformatics into undergraduate life sciences curricula, we read with interest the recent CBE—Life Sciences Education publication by Magana et al. (2014) , which surveyed the literature on stand-alone bioinformatics education efforts. On the basis of their analysis, the authors propose three main steps toward the design of an instructional curriculum in bioinformatics using the “understanding by design” process: identification of desired learning outcomes, development of methods of assessment, and determination of best pedagogical methods. We describe here our efforts to assemble a network of like-minded bioinformatics educators both to undertake this process and to identify professional development opportunities for today’s life sciences educators. Our efforts are geared toward first forming, then growing, the Network for Integrating Bioinformatics into Life Sciences Education (NIBLSE; pronounced “nibbles”). The network began last year with the support of a Research Coordination Network Incubator grant from the National Science Foundation. The long-term goal of NIBLSE is to establish bioinformatics as an essential component of undergraduate life sciences education by creating a network of investigators to articulate a shared vision about how best to integrate bioinformatics into life sciences curricula. Our initial networking effort in April 2014 convened 26 biology and computer science faculty from diverse institutions and professionals from the private sector to explore core issues related to the long-term goal (see the Supplemental Material for the list of participants). In particular, the conference focused on how best to facilitate effective communication and enhance opportunities for collaboration by discussing current challenges and potential next steps for the 1) integration of bioinformatics into life sciences curricula; 2) assessment of bioinformatics educational resources; and 3) professional development of life sciences educators. We summarize the challenges and next steps identified by the participants at the conference in each of these areas below.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.