Abstract

Interaction of natural calf thymus DNA with Mn(2+) ions was studied at room temperature and at elevated temperatures in the range from 23 degrees C to 94 degrees C by means of IR absorption and vibrational circular dichroism (VCD) spectroscopy. The Mn(2+) concentration was varied between 0 and 1.3M (0 and 10 [Mn]/[P]). The secondary structure of DNA remained in the frame of the B-form family in the whole ion concentration range at room temperature. No significant DNA denaturation was revealed at room temperature even at the highest concentration of metal ions studied. However at elevated temperatures, DNA denaturation and a significant decrease of the melting temperature of DNA connected with a decrease of the stability of DNA induced by Mn(2+) ions occurred. VCD demonstrated sensitivity to DNA condensation and aggregation as well as an ability to distinguish between these two processes. No condensation or aggregation of DNA was observed at room temperature at any of the metal ion concentrations studied. DNA condensation was revealed in a very narrow range of experimental conditions at around 2.4 [Mn]/[P] and about 55 degrees C. DNA aggregation was observed in the presence of Mn(2+) ions at elevated temperatures during or after denaturation. VCD spectroscopy turned out to be useful for studying DNA condensation and aggregation due to its ability to distinguish between these two processes, and for providing information about DNA secondary structure in a condensed or aggregated state.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call