Abstract
AbstractIncreases in DNA degradation have been detected in numerous situations in which organisms are exposed to pollutants. However, outside of the ecotoxicological literature, few studies have investigated whether there exists important variation in DNA integrity in free-living, healthy animals. Using the alkaline version of the comet assay to estimate DNA integrity in blood samples, we aimed to evaluate whether DNA integrity during early life is associated with nestlings' age, body mass, within-brood status, and oxidative stress using nestlings from a wild population of spotless starlings (Sturnus unicolor) as a model. We found important levels of variation in DNA integrity, suggesting the possibility that DNA integrity may have implications for offspring fitness. DNA integrity was dependent on the developmental stage, being lower at hatching than at the end of the nestling period. DNA integrity was also negatively related to the levels of oxidative damage at hatching and positively associated with wing length at fledging. In addition, position within the size hierarchy of the brood at fledging explained differences in DNA integrity, with higher levels in core than in marginal nestlings. Finally, despite extensive within-individual variation along nestling's age, we found DNA integrity during early life to be moderately repeatable within broods. Hence, DNA integrity in early life appears to be mainly affected by environmental factors, such as natural stressors. Our results suggest that measuring the variation in DNA integrity may be a fruitful approach for the assessment of individual fitness in natural populations and can be applied to studies in developmental biology and ecology.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have