Abstract

Taking advantage of the homogeneous and heterogeneous electrochemical biosensors, a simple, sensitive, and selective electrochemical biosensor is constructed by combining entropy-driven amplification (EDA) with DNA walker. This electrochemical biosensor realizes the biorecognition and EDA operation in homogeneous solution, which is beneficial to improve the recognition and amplification efficiency. A two-leg DNA walker generated by EDA can walk on the surface of gold electrode for cleaving the immobilized substrate DNA and releasing the electroactive labels, giving rise to a significant decrease of the electrochemical signal. The immobilization of the electroactive labels ensures the reproducibility and reliability of the biosensor. The present cascade amplification assay can be applied to detect target DNA with a detection limit of 0.29 fM, and base mutations can be easily distinguished. Moreover, the proposed electrochemical biosensor shows a satisfactory performance for the detection of target DNA in human serum. Thus, the novel electrochemical biosensor holds promising potential for a future application in disease diagnosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call