Abstract

Norovirus (NoV) is a foodborne pathogen that can cause sporadic and epidemic gastrointestinal diseases. Rapid screening is crucial to promptly identify the presence of NoV and prevent food poisoning. Here, we present a sensitive, selective, and rapid electrochemical biosensor for the detection of NoV. The proposed electrochemical biosensor is composed of a nanostructured gold electrode conjugated with concanavalin A (ConA). ConA functions as a recognition element that selectively captures NoV. Cyclic voltammetry revealed a linear relationship (R2=0.998) between the current and concentration of NoV (in the range of 102 and 106 copies/mL), with a relatively short assay time (1h) and a good detection limit (35 copies/mL). Additionally, the signals of Hepatitis A and E in the selectively test were found to be only 2.0% and 2.8% of the NoV signal at an identical concentration of 103 copies/mL, proving that the electrochemical biosensor has a selectively of approximately 98%. Moreover, the concentration of NoV was measured in a realistic environment, i.e., a sample solution extracted from lettuce, to demonstrate a potential application of the proposed biosensor (LoD=60 copies/mL).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call