Abstract

Long-range electrostatic interactions beyond biomolecular interaction interfaces have not been extensively studied due to the limitation in engineering electric double layers in physiological fluids. Here we find that long-range electrostatic interactions play an essential role in kinetic modulation of DNA hybridizations. Protein and gold nanoparticles with different charges are encapsulated in tetrahedral frameworks to exert diverse electrostatic effects on site-specifically tethered single DNA strands. Using this strategy, we have successfully modulated the hybridization kinetics in both bulk solution and single molecule level. Experimental and theoretical studies reveal that long-range Coulomb interactions are the key factor for hybridization rates. This work validates the important role of long-range electrostatic forces in nucleic acid-biomacromolecule complexes, which may encourage new strategies of gene regulation, antisense therapy, and nucleic acid detection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.