Abstract
A novel Vibrio cholerae insertion sequence element, designated IS1004, was characterized and used for DNA fingerprinting of Vibrio spp. IS1004 comprises 628 bp and contains an open reading frame whose product shows a large degree of sequence identity with the IS200-encoded transposase. IS1004 was present in one to eight copies in most of the V. cholerae strains analyzed. The IS1004-generated fingerprints of epidemic V. cholerae strains with serotype O1 were closely related, although it was possible to distinguish between the two biotypes, classical and El Tor. Non-O1 serotype strains generally showed heterogeneous patterns unrelated to those of the epidemic O1 strains. Several strains were observed with identical or related fingerprint patterns but expressed different serotypes. Conversely, strains with different fingerprint patterns but identical serotypes were also found. These observations indicate that the gene clusters coding for distinct O antigens may be transferred horizontally between V. cholerae strains. Two examples of non-O1 strains with a fingerprint resembling that of epidemic O1 strains were found; they were the O139 Bengal strain and an O37 strain. The O139 Bengal strain is closely related to the El Tor biotype. The O37 strain was responsible for a large cholera outbreak in Sudan in 1968 and was classified as a noncholera vibrio. Our study, however, shows that the O37 Sudan strain is genetically closely related to classical O1 strains. Similar to O139 Bengal, O37 Sudan lacked most of the O1 antigen cluster but did contain flanking genes. Thus, O37 Sudan represents a second example of an epidemic V. cholerae strain carrying non-O1 antigens. This study underlines the importance of genotypic methods for the differentiation of V. cholerae strains and for recognition of strains with epidemic potential.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have