Abstract

The specific recognition of DNA modifications by repair endonucleases was used to characterize the DNA damage induced by photosensitizers in the presence of visible light. Under cell-free conditions, chemically unrelated photosensitizers (methylene blue, acridine orange, proflavin, riboflavin, hematoporphyrin) induce the same type of DNA damage. It is characterized by a high number of base modifications sensitive to the repair endonuclease FPG protein (formamidopyrimidine-DNA glycosylase), while both the number of DNA strand breaks and the number of sites of base loss (sensitive to exonuclease III or endonuclease IV) is low. Therefore the damage is markedly different from that induced by hydroxyl radicals. Mechanistically, the generation of the base modifications sensitive to FPG protein involves singlet oxygen in some, but possibly not all cases, as substituting D 2O for H 2O increases the reaction yield six-fold in the case of methylene blue, but only 1.4-fold in the case of acridine orange. In plasmids from Salmonella typhimurium strains treated with methylene blue or acridine orange plus light and from Escherichia coli strains treated with acridine orange or proflavin plus light, the same type of damage was observed as under cell-free conditions. In L1210 mouse leukemia cells exposed to acridine orange plus light, the numbers of modifications sensitive to FPG protein and exonuclease III were quantified, in addition to strand breaks, by a modified alkaline elution assay. Again, the number of base modifications sensitive to FPG protein was found to be several-fold higher than the number of strand breaks and sites of base loss. It has to be concluded that the DNA damage in the intact cells is not mediated by hydroxyl radicals or cellular nucleases, but by the same mechanism as operates under cell-free conditions with these agents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.