Abstract

Aim of the studyTo study the mechanisms of inhibition of cell growth and induction of DNA damage in oridonin-treated MCF-7 human breast cancer cells.Material and methodsThe cytotoxicity of oridonin-treated MCF-7 cells was measured by MTT assay. Cell cycle phase distribution was analyzed by flow cytometry. P-ATM, P-CHK2, γH2AX and P-P53 protein expressions were detected by Western blot analysis. The expression of r-h2ax and P-ATM was also detected by immunofluorescence staining. The degree of cellular damage of oridonin-induced MCF-7 human breast cancer cells was confirmed by the comet assay analysis of DNA fragmentation.ResultsOridonin inhibited cell growth in a time- and dose-dependent manner. The IC50 values at 48 and 72 hours were 78.3 and 31.62 µmol/l, respectively. Oridonin induced G2/M phase arrest in MCF-7 cells. MCF-7 cells treated with oridonin showed significant DNA damage as shown by an increase in olive tail moment (OTM). The protein expression levels of P-ATM, P-CHK2, γH2AX and P-P53 were increased significantly in a dose-dependent manner.ConclusionsDNA damage provokes p53-mediated G2/M cell cycle arrest in oridonin-induced MCF-7 cells through the mechanism of CHK2 activation by activated ATM protein kinase, which is induced by oridonin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.