Abstract

Nickel oxide nanoparticles (NiO-NPs) have extensively used in industrial and consumer products. The present study conducted to gain more knowledge about the safe use of NiO-NPs and also to understand their impact on the environment and biological systems. Herein, we examined the genotoxic and ultra-structural effects of a sublethal dose of NiO-NPs (0.03 mg/g) on the ovarian tissues of the ground beetle, Blaps polycresta. The mean diameter of NiO-NPs was 24.49 ± 3.88 nm, as obtained through transmission electron microscopy (TEM). In terms of DNA damage levels, the frequency of micronucleus (MN) formation was highly significant in the NiO-NPs treated group versus the controls. Besides, NiO-NPs treatment resulted in a significant increase in the tail length of comets. Further, electron microscopy revealed a progressive increase in chromatin condensation of the ovarian nurse and follicular cells, in addition to the accumulation of lysosomes and endo-lysosomes in their cytoplasm. In conclusion, NiO-NPs are capable of gaining access to the ovary of B. polycresta and causing DNA damage and a high degree of cellular toxicity in the ovarian cells. The present study highlights, for the first time, the adverse effects of these NPs to female gonads of insects and raised the concern of its genotoxic potential. It would be of interest to investigate NiO-NPs mediated intracellular ROS generation in future studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call