Abstract

Vaccinia virus encodes an enzyme, A22R, required during DNA replication for cleaving viral DNA concatamers to yield unit-length viral genomes. The concatamer junctions contain inverted repeat sequences that can be extruded as cruciforms, yielding Holliday junctions. Previous work indicated that A22R can cleave Holliday junctions in vitro. To investigate the mechanism of action of A22R, we have optimized reaction conditions and characterized the sequence specificity of cleavage. We found that addition of 20% dimethylsulfoxide boosted product formation six-fold, resulting in improved sensitivity of cleavage assays. To analyze cleavage specificity, we took advantage of mobile Holliday junctions, in which branch migration allowed sampling of many DNA sequences. We found that A22R weakly favors cleavage at the sequence 5′-(G/C)↓(A/T)-3′, and so is much less sequence specific than its Escherichia coli relative, RuvC. Analysis of the reaction products revealed that A22R cleaves to leave a 3′ hydroxyl at the cleaved phosphodiester bond.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.