Abstract

Circular permutation analysis was used to determine the degree of DNA bending induced by binding of the glucocorticoid receptor (GR) DNA binding domain (DBD), the human progesterone receptor (PR) DBD, PR-A:A and PR-B:B homodimers, and PR-A:B heterodimers to the glucocorticoid response element/progesterone response element (GRE/PRE). The bending angles induced by the GR DBD and the PR DBD were approximately 28 degrees and 25 degrees, respectively. The PR-B:B and PR-A:A homodimers and the PR-A:B heterodimers all induced similar DNA bending angles of 72-77 degrees. The substantially greater DNA bend induced by full-length PR compared to the PR DBD indicates that sequences outside the classic zinc finger DNA binding domain may play an important role in the interaction of PR with the GRE/PRE. Because PR-A:A and PR-B:B homodimers and the PR-A:B heterodimers induce similar DNA bends, the different abilities of the PR-A and PR-B isoforms to activate transcription are not due to differences in their abilities to distort DNA structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.